Simultaneous Spatial and Temporal Focusing in Nonlinear Microscopy.
نویسندگان
چکیده
Simultaneous spatial and temporal focusing (SSTF), when combined with nonlinear microscopy, can improve the axial excitation confinement of wide-field and line-scanning imaging. Because two-photon excited fluorescence depends inversely on the pulse width of the excitation beam, SSTF decreases the background excitation of the sample outside of the focal volume by broadening the pulse width everywhere but at the geometric focus of the objective lens. This review theoretically describes the beam propagation within the sample using Fresnel diffraction in the frequency domain, deriving an analytical expression for the pulse evolution. SSTF can scan the temporal focal plane axially by adjusting the GVD in the excitation beam path. We theoretically define the axial confinement for line-scanning SSTF imaging using a time-domain understanding and conclude that line-scanning SSTF is similar to the temporally-decorrelated multifocal multiphoton imaging technique. Recent experiments on the temporal focusing effect and its axial confinement, as well as the axial scanning of the temporal focus by tuning the GVD, are presented. We further discuss this technique for axial-scanning multiphoton fluorescence fiber probes without any moving parts at the distal end. The temporal focusing effect in SSTF essentially replaces the focusing of one spatial dimension in conventional wide-field and line-scanning imaging. Although the best axial confinement achieved by SSTF cannot surpass that of a regular point-scanning system, this trade-off between spatial and temporal focusing can provide significant advantages in applications such as high-speed imaging and remote axial scanning in an endoscopic fiber probe.
منابع مشابه
Axial scanning by pulse shaper for simultaneous spatial and temporal focusing of femtosecond laser pulses
We develop a wide-field simultaneous spatial and temporal focusing (SSTF) setup for two-photon excited fluorescence microscopy and its axial focusing point is scanned by second-order dispersion added by a femtosecond laser pulse shaper placed before the setup. We measure the axial resolution of second harmonic generation (SHG) at the edge of a BBO crystal.
متن کاملCharacteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses
Simultaneous spatial and temporal focusing (SSTF) of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses...
متن کاملParametric spatio-temporal control of focusing laser pulses.
Simultaneous spatial and temporal focusing pulses are created using parametric pulse shaping and characterized with scanning SEA TADPOLE. Multiple foci are created with optically-controlled longitudal and transverse spatial positions. The characterized foci are in agreement with the predictions of a Fourier optics model. The measurements reveal significant pulse front tilt resulting from the si...
متن کاملSpatio-temporal analysis of the covid-19 impacts on the using Chicago urban shared bicycles by tensor-based approach
Cycling is a phenomenon in urban transportation that has the ability to allocate a specific location at any moment in time. Accordingly, spatial analysis of bicycle trips can be accompanied by temporal analysis. The use of a GIS environment is commonly recommended to display the extent of the phenomenon's spatial changes. However, in order to apply and display changes over time, it will requir...
متن کاملNonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device
In this study, the light diffraction of temporal focusing multiphoton excitation microscopy (TFMPEM) and the excitation patterning of nonlinear structured-illumination microscopy (NSIM) can be simultaneously and accurately implemented via a single high-resolution digital micromirror device. The lateral and axial spatial resolutions of the TFMPEM are remarkably improved through the second-order ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics communications
دوره 281 7 شماره
صفحات -
تاریخ انتشار 2008